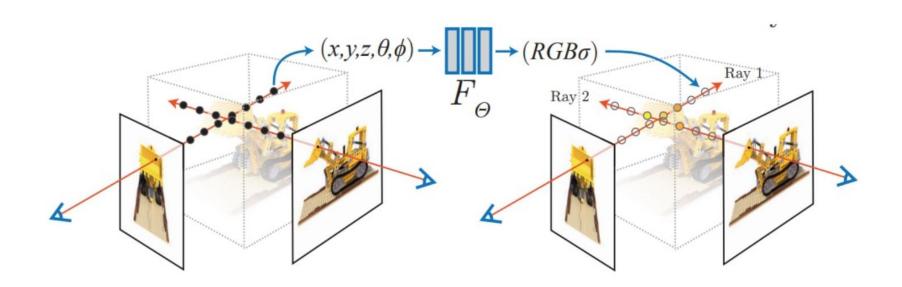


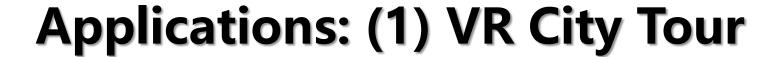
11. 3D Neural Rendering and Reconstruction

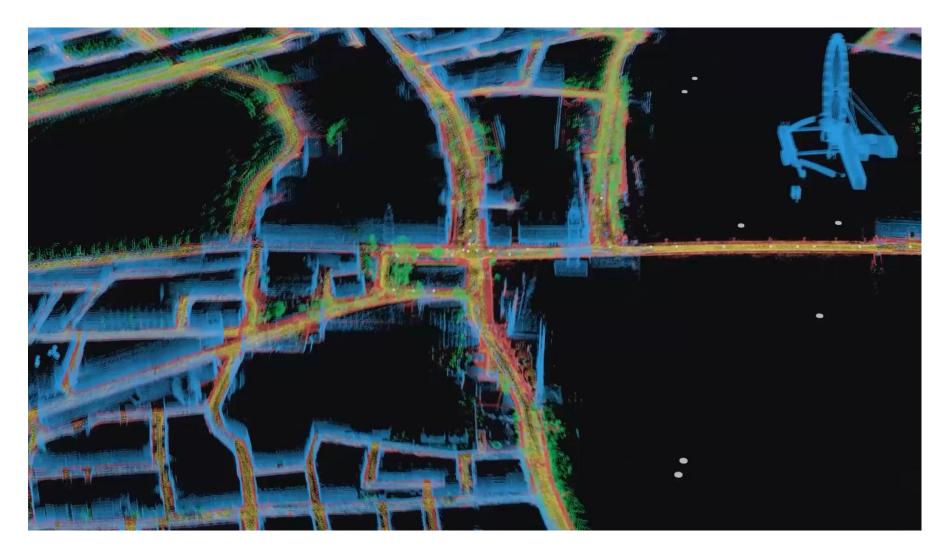


Outline

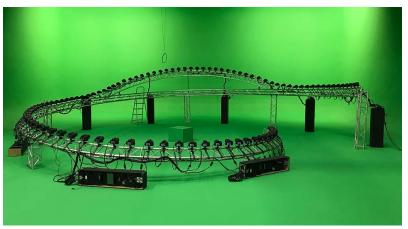
- Neural Radiance Fields (NeRF)
- 3D Gaussian Splatting (3DGS)

Input images 3D model Novel views





Google Immersive View



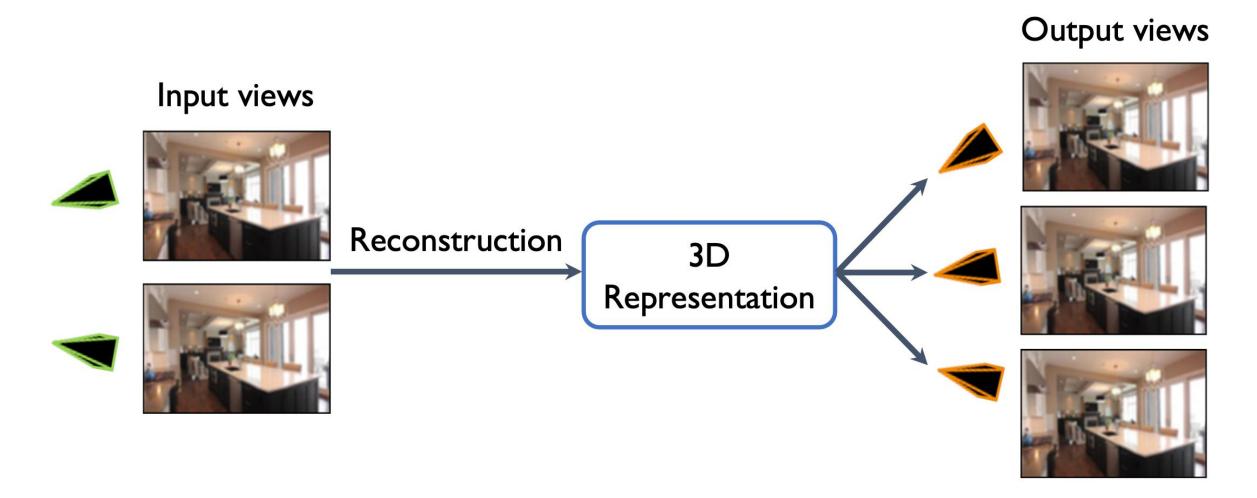
https://www.youtube.com/clip/Ugkx200l8Vsn3ciOS4l38PSXl gOgevhiN35

https://www.youtube.com/watch?v=TX9qSaGXFyg

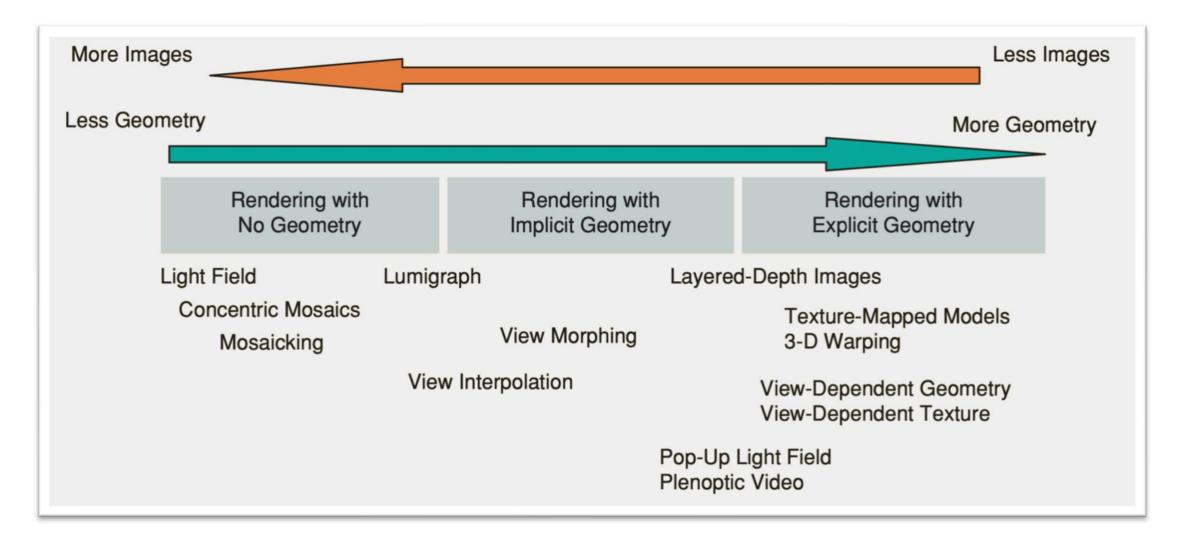
Applications: (5) Simulator

https://www.youtube.com/watch?v=RVFIDEuNtt0

Image-based Rendering



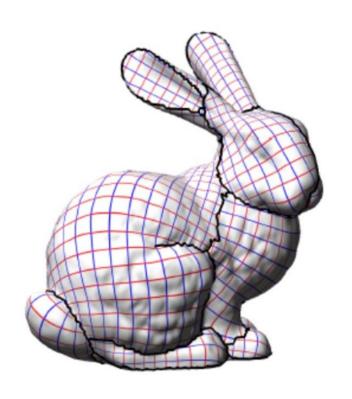
Traditional Methods

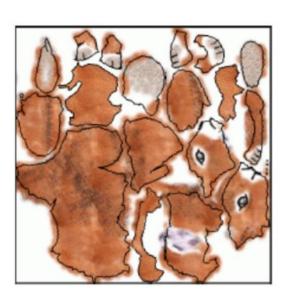


Common 3D Representation 1: Surface-based Representations

1891 RES

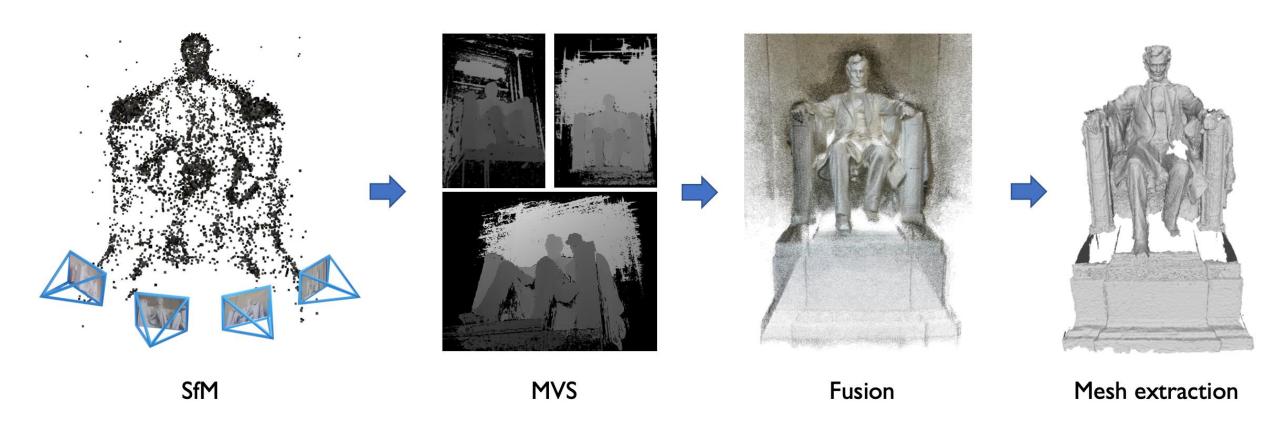
Textured 3D Mesh





Common 3D Representation 1: Surface-based Representations

• Reconstruction process:



Challenges of Surface-based Representations

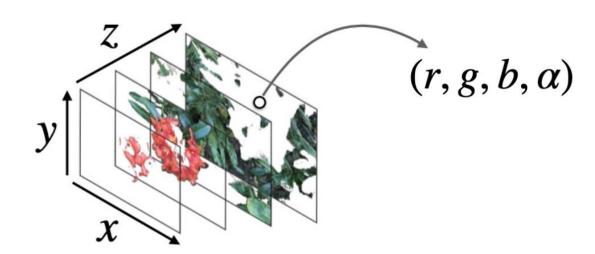
WAR UNIVERSITY OF THE PARTY OF

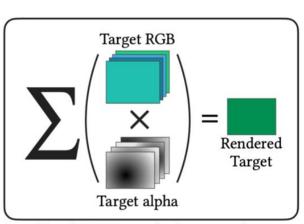
Two main challenges:

- Difficult to reconstruct
 high-quality surface geometry.
- Difficult to represent highly complex three-dimensional scenes.

Common 3D Representation 2: Volume-based Representations

Multi-Plane image (MPI)

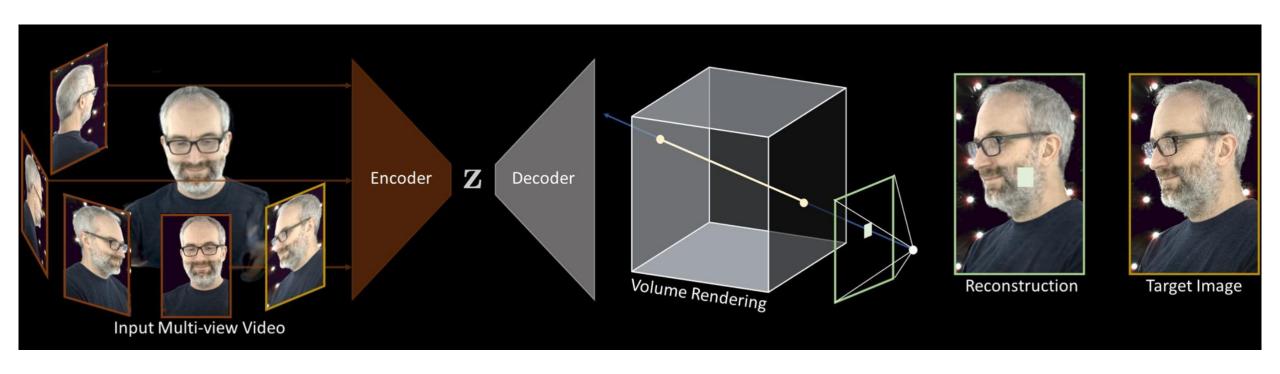




Blend RGBA renderings together to render final output image

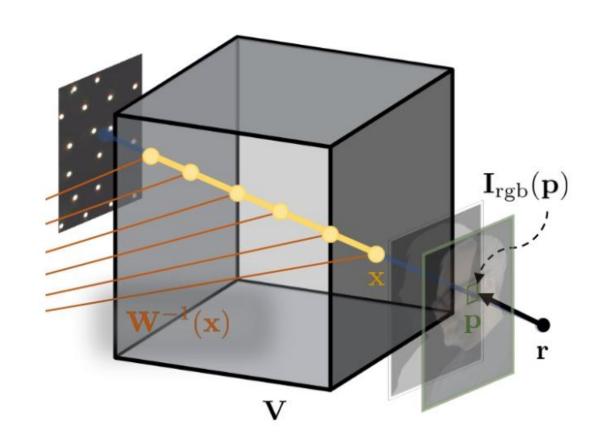
Common 3D Representation 2: Volume-based Representations

RGB-alpha volume

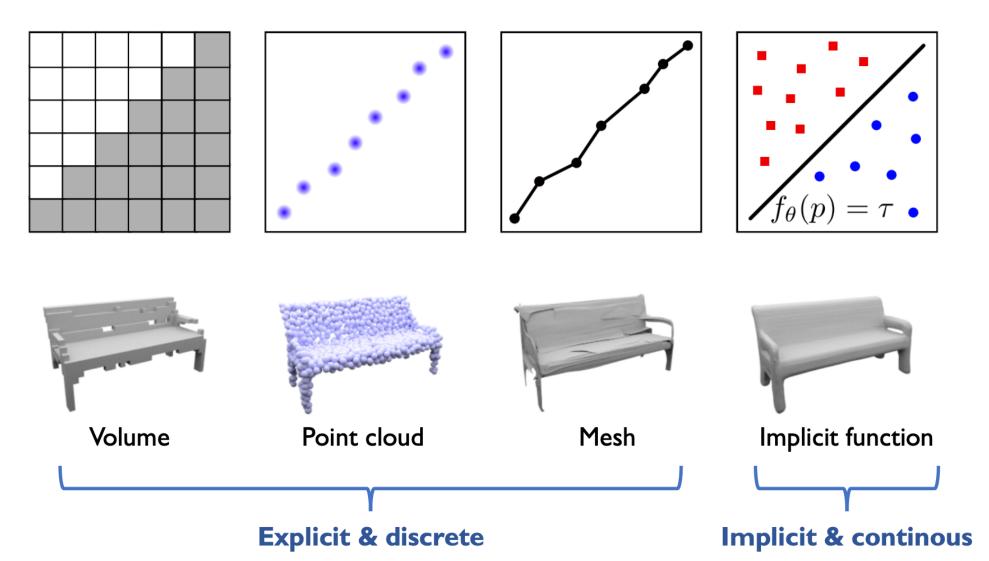


Common 3D Representation 2: Volume-based Representations

- Advantages
 - Capable of representing highly complex scenes
 - Fast rendering speed
- Disadvantages
 - Prone to occupying large amounts of video memory
 - Unable to represent highresolution scenes



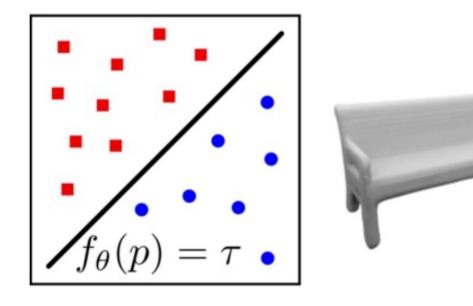
Common 3D Representation 3: Implicit Representations



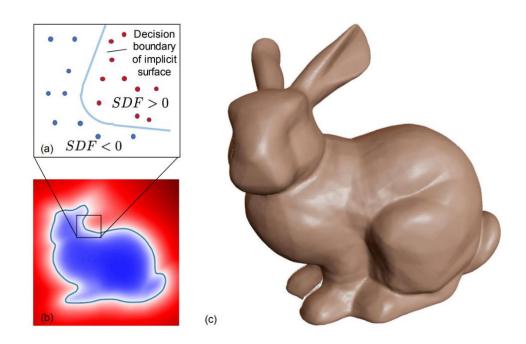
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.

Common 3D Representation 3: Implicit Representation

Occpupacy



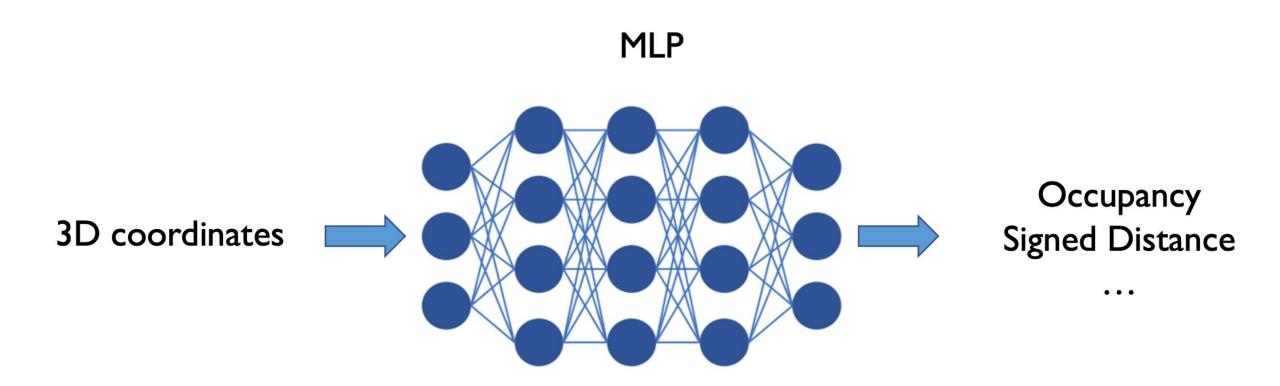
Signed distance function (SDF)



Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.

Implicit Neural Representations

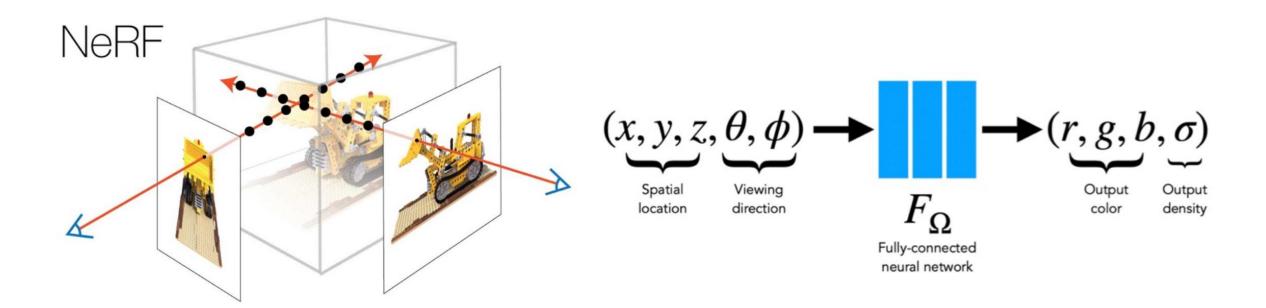


Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.

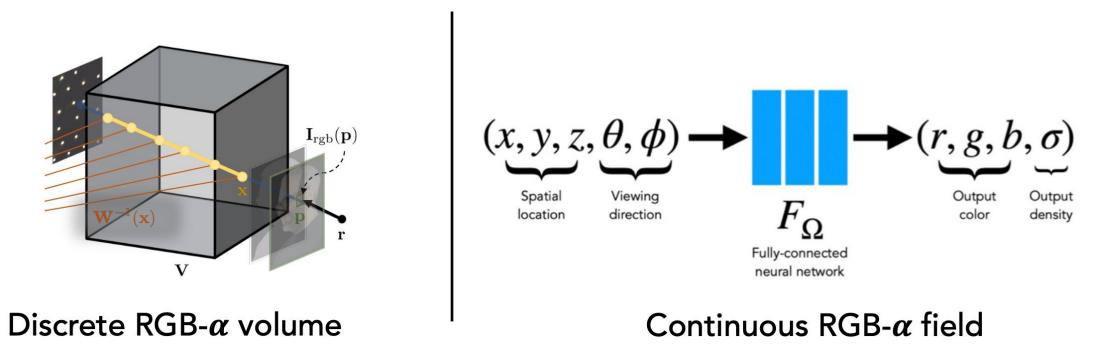
Neural Radiance Fields (NeRF)

Represent the scene as a continuous voxel density field and color field.



Neural Radiance Fields (NeRF)

 Comparison between discrete representation and continuous representation.



Neural Volumes: Learning Dynamic Renderable Volumes from Images, SIGGRAPH 2019.

NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.

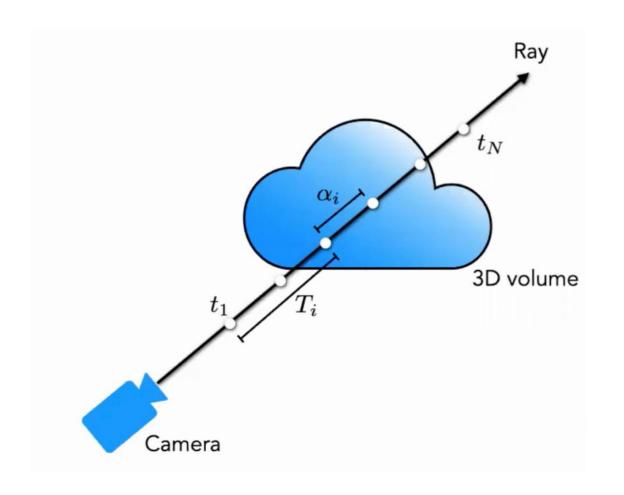
The Rendering Process of NeRF: Volume Rendering

Rendering model for ray r(t) = o + td:

$$Cpprox \sum_{i=1}^{N} T_i lpha_i c_i$$
 colors weights

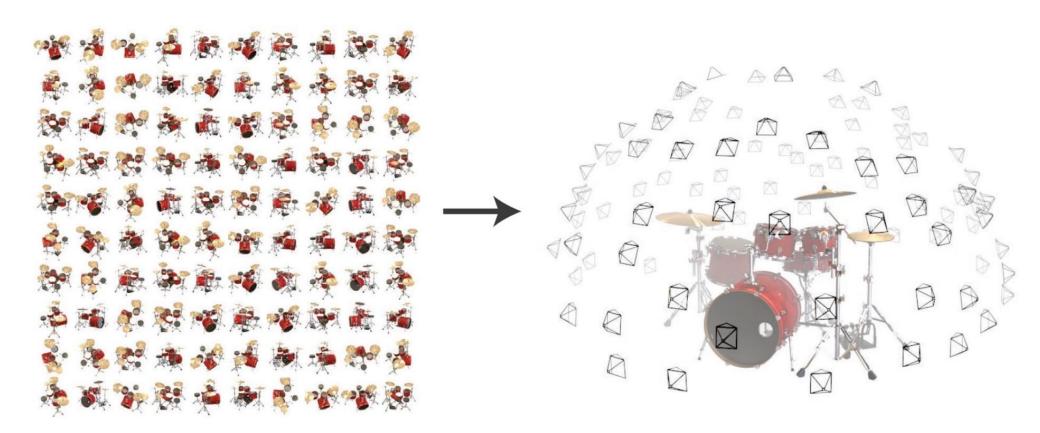
How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$



The Training Process of NeRF

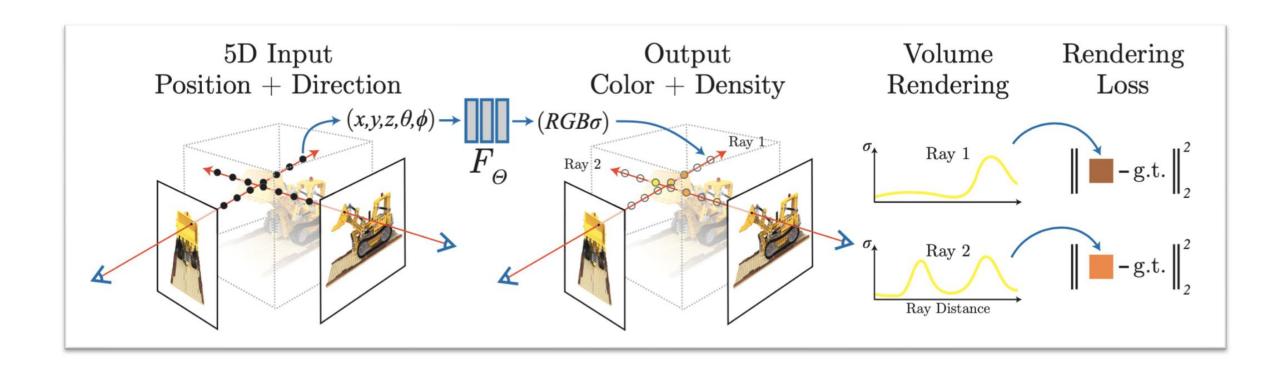
Optimizing NeRF Based on Multi-View Images.



Input multi-view images

Optimizing NeRF

NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.



Map input coordinates to high-dimensional vectors

$$\gamma(p) = (\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p))$$

Ground Truth

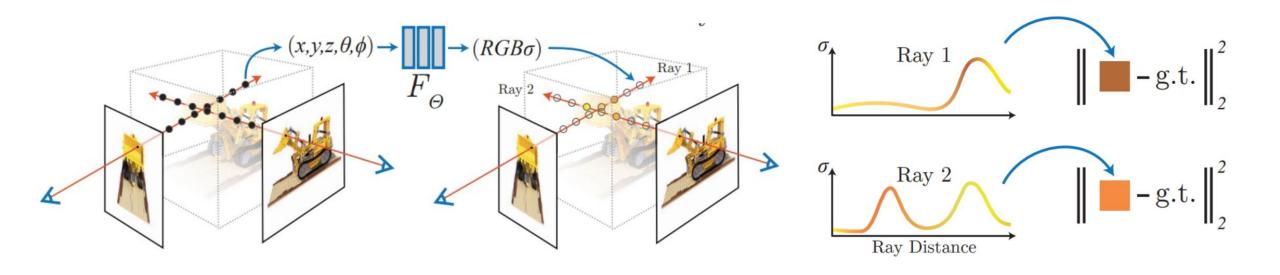
Complete Model

No Positional Encoding

The Demo of NeRF

NeRF: Representing scenes as neural radiance fields for view synthesis, ECCV 2020.

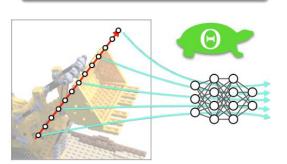
• MLP networks can represent continuous high-resolution scenes



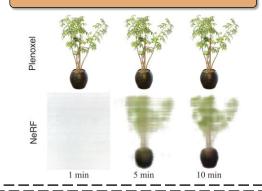
Problems faced by NeRF

The challenges faced by NeRF in static scene modeling

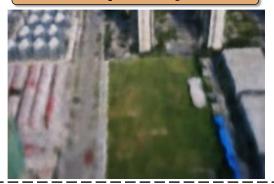
Slow rendering speed



Slow training speed



Weak modeling capability



Poor model robustness

The challenges faced by NeRF in other types of scene modeling

Low geometric reconstruction quality

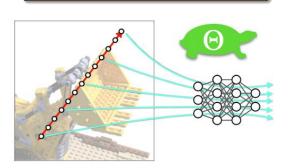
Unable to model multimodal signals

Unable to model dynamic scenes

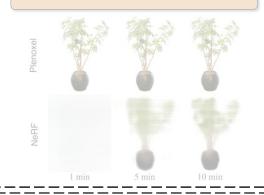
Problem 1 of NeRF: Slow rendering speed

The challenges faced by NeRF in static scene modeling

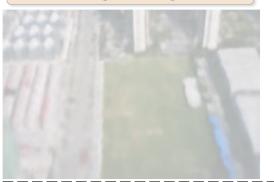
Slow rendering speed



Slow training speed



Weak modeling capability



Poor model robustness

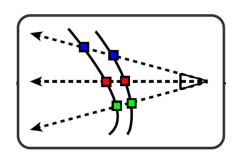
The challenges faced by NeRF in other types of scene modeling

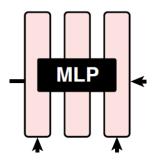
Low geometric reconstruction quality

Unable to model multimodal signals

Unable to model dynamic scenes

Analysis of NeRF Rendering Costs





=

The number of sampled points

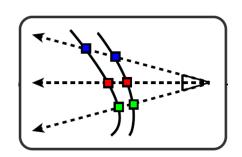
*

Point-level cost calculation

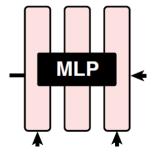
Rendering cost

Ideas for Reducing NeRF Rendering Costs

- 1. Reducing the Number of Sampling Points: NSVF、AdaNeRF、ENeRF
- 2. Reducing the Per-Point Computation Cost: SNeRG、PlenOctree、KiloNeRF、ObjectNeRF



*



=

KPlanes LPIPS: 0.118 FPS: -0.5

The number of sampled points

*

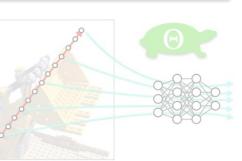
Point-level cost calculation

Rendering cost

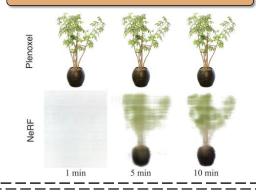
Problem 2 of NeRF: Slow training speed

The challenges faced by NeRF in static scene modeling

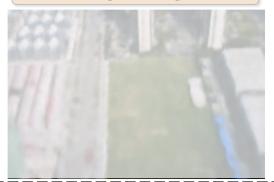
Slow rendering speed



Slow training speed



Weak modeling capability



Poor model robustness

The challenges faced by NeRF in other types of scene modeling

Low geometric reconstruction quality

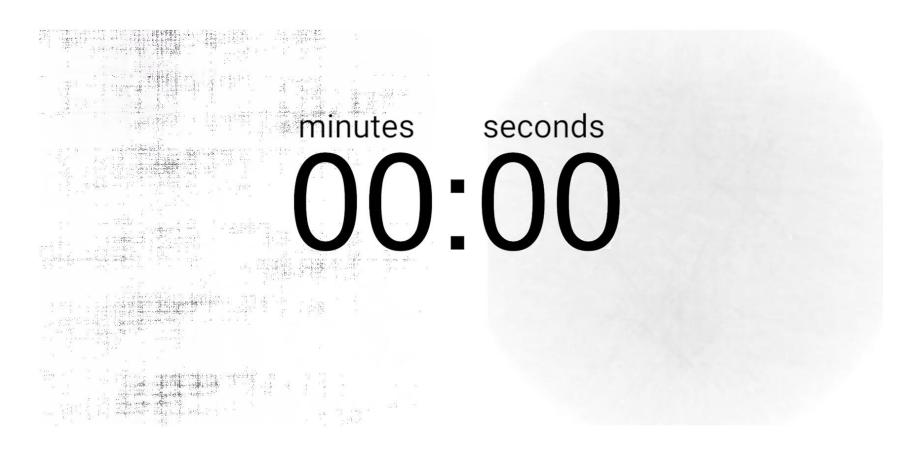
Unable to model multimodal signals

Unable to model dynamic scenes

NeRF's slow training speed

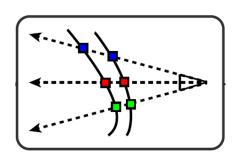
NeRF

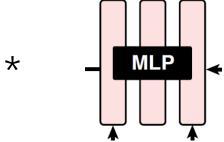
Plenoxels



Plenoxels: Radiance Fields without Neural Networks. CVPR 2022.

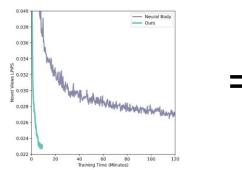
Analysis of NeRF's Training Cost

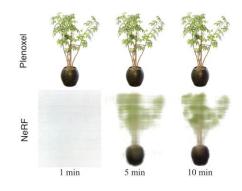




*

*





Number of 3D Points

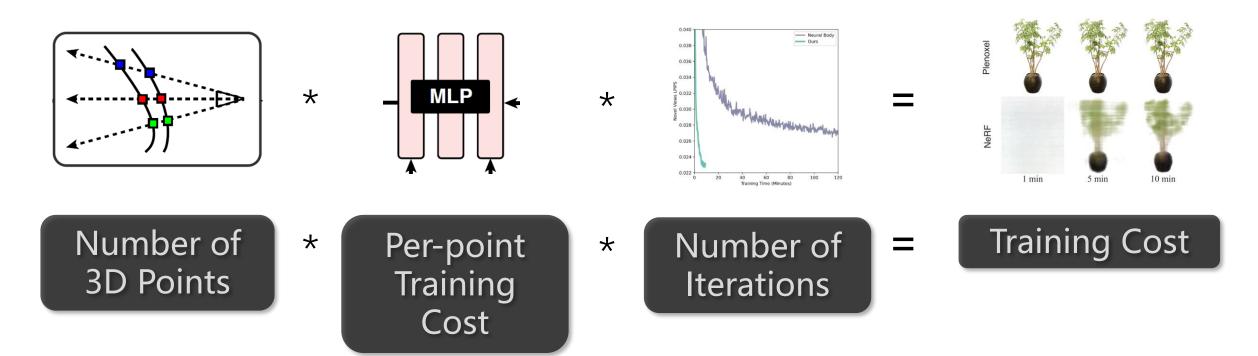
Per-point Training Cost

Number of * **Iterations**

Training Cost

Ideas for Reducing NeRF's Training Cost

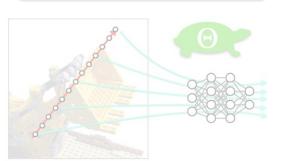
- 1. Reducing the number of 3D points: Plenoxel
- 2. Reducing per-point training cost: Instant NGP、TensoRF
- 3. Reducing the number of iterations: IBRNet



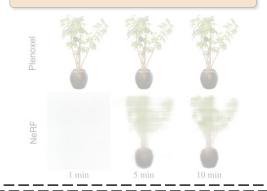
Problem 3 of NeRF: Weak modeling capability

The challenges faced by NeRF in static scene modeling

Slow rendering speed



Slow training speed



Weak modeling capability

Poor model robustness

The challenges faced by NeRF in other types of scene modeling

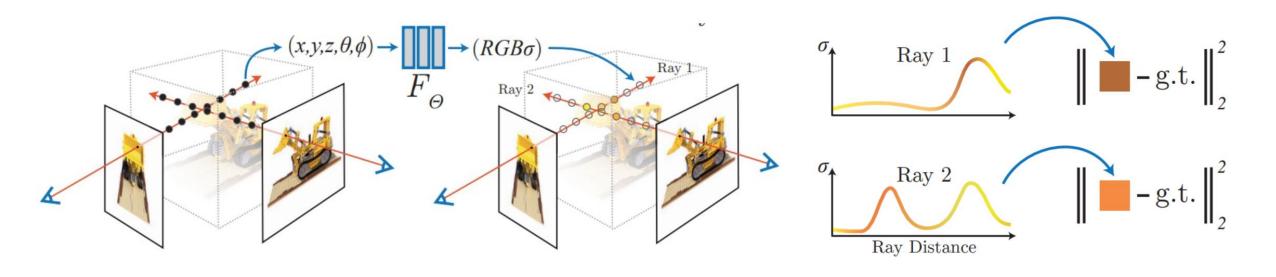
Low geometric reconstruction quality

Unable to model multimodal signals

Unable to model dynamic scenes

Reasons Why NeRF Fails to Model Large Scenes

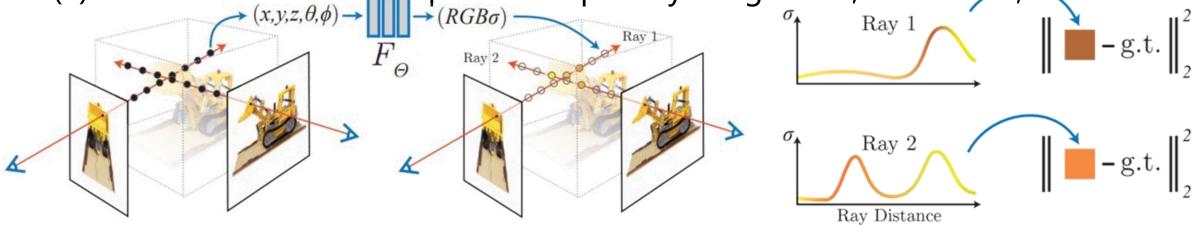
- The capability of NeRF's MLP network is limited.
- NeRF samples 3D points along camera rays, thus failing to handle unbounded scenes.



Ideas for Enhancing NeRF's Large-Scene Modeling Capability

- The capability of NeRF's MLP network is limited.
- NeRF samples 3D points along camera rays, thus failing to handle unbounded scenes.
- Solutions:
- (1) Design a new scene representation: NeRF++;

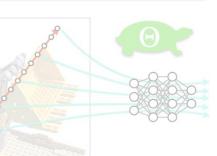
• (2) Enhance the model's expressive capability: MegaNeRF, BlockNeRF, Grid-NeRF.



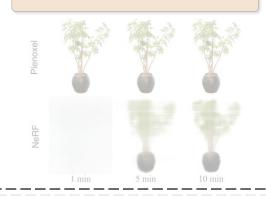
Problem 4 of NeRF: Poor model robustness

The challenges faced by NeRF in static scene modeling

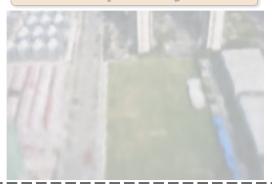
Slow rendering speed



Slow training speed



Weak modeling capability



Poor model robustness

The challenges faced by NeRF in other types of scene modeling

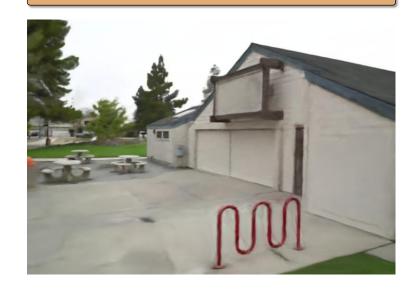
Low geometric reconstruction quality

Unable to model multimodal signals

Unable to model dynamic scenes

Manifestations of NeRF's Model Non-Robustness

Inaccurate Camera Poses



Sparse Input Viewpoints

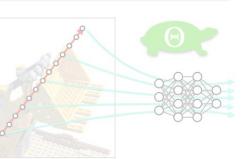
Illumination Changes

BARF Reg-NeRF, SinNeRF NeRF in the Wild

Problem 5 of NeRF: Low geometric reconstruction quality

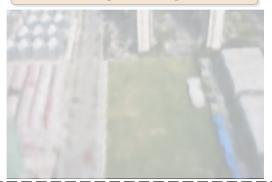
The challenges faced by NeRF in static scene modeling

Slow rendering speed



Slow training speed

Weak modeling capability



Poor model robustness

The challenges faced by NeRF in other types of scene modeling

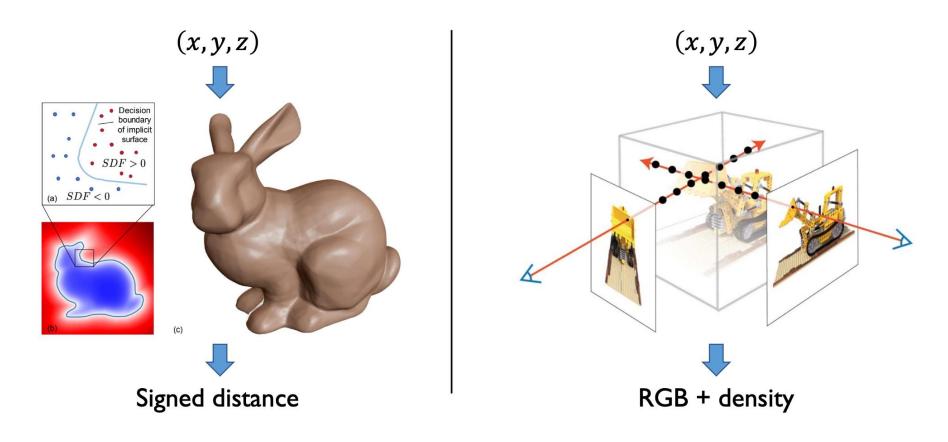
Low geometric reconstruction quality

Unable to model multimodal signals

Unable to model dynamic scenes

Reasons for the poor quality of NeRF's geometric reconstruction

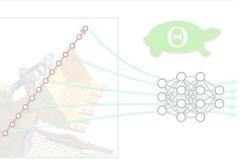
NeRF lacks the definition of surface geometry.



Problem 6 of NeRF: Unable to model multimodal signals

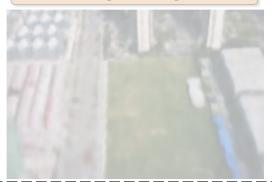
The challenges faced by NeRF in static scene modeling

Slow rendering speed



Slow training speed

Weak modeling capability



Poor model robustness

The challenges faced by NeRF in other types of scene modeling

Low geometric reconstruction quality

Unable to model multimodal signals

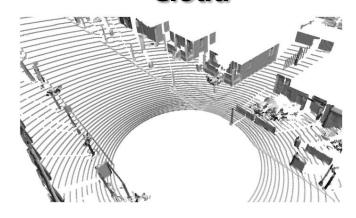
Unable to model dynamic scenes

NeRF lacks multimodal signal modeling

Semantic Field

Object Material

LiDAR Point Cloud

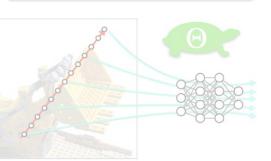


Semantic NeRF InvRender LiDAR-NeRF

Problem 7 of NeRF: Unable to model dynamic scenes

The challenges faced by NeRF in static scene modeling

Slow rendering speed



Slow training speed

Weak modeling capability

Poor model robustness

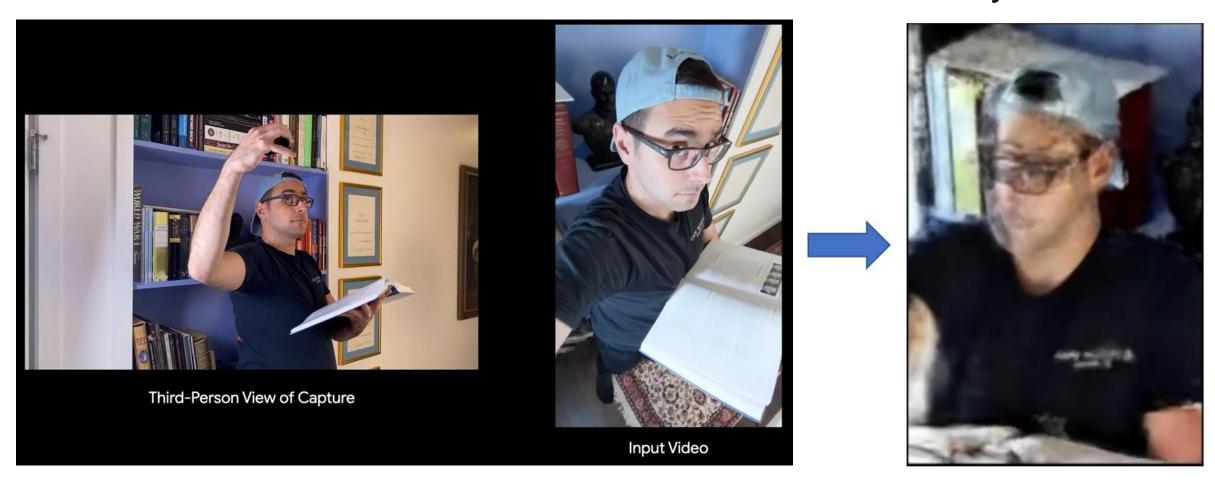
The challenges faced by NeRF in other types of scene modeling

Low geometric reconstruction quality

Unable to model multimodal signals

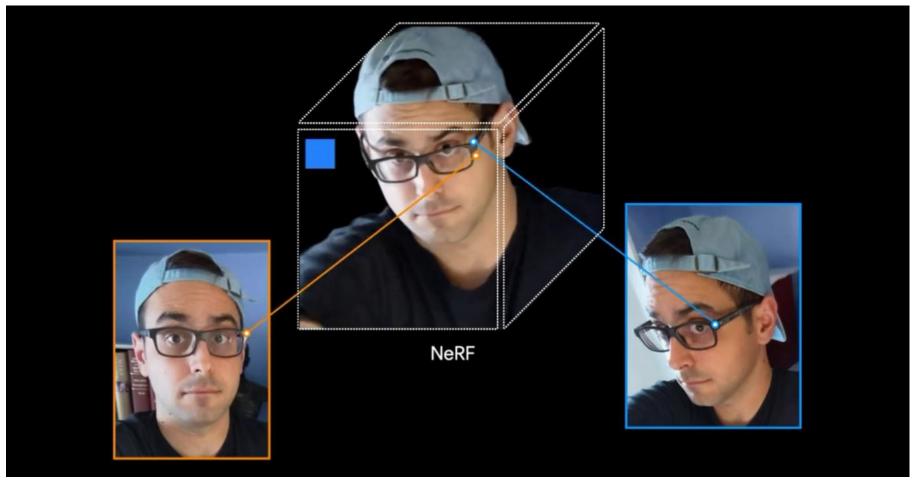
Unable to model dynamic scenes

• NeRF cannot obtain reasonable reconstruction results from dynamic scenes.



Nerfies: Deformable neural radiance fields. ICCV 2021.

· Object movement in dynamic scenes prevents multi-view matching.



Nerfies: Deformable neural radiance fields. ICCV 2021.

Performance of Deformable NeRF

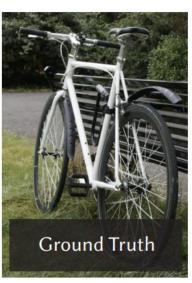
Nerfies: Deformable neural radiance fields. ICCV 2021.

Outline

- Neural Radiance Fields (NeRF)
- 3D Gaussian Splatting (3DGS)

3DGS Modeling: Explicitly modeling the scene as attribute-differentiable 3D Gaussian ellipsoids





• Ideal NVS method:

- High quality (material & geometry)
- Efficient (training & rendering & memory)
- User-friendly (easy to reproduce & good compatibility)

• 3DGS:

- High quality (compared with Mip-NeRF360)
- Efficient training (compared with Instant-NGP)
- 100+ FPS real-time rendering (A6000 GPU)
- Good compatibility with traditional rasterization pipelines

3DGS Modeling

Ecstatica(1994)

- Ellipsoid Modeling: Explicitly model 3D scenes using 3D ellipsoids.
- **Differentiability**: 3D ellipsoids are represented by 3D Gaussians, which possess properties for expressing geometry/materials. These properties can be adjusted through differentiable rendering.
- Rasterization: 3D Gaussian ellipsoids enable convenient and efficient rasterization.

3DGS Modeling: Properties


```
point_cloud.ply ×
E: > 3DGS > Projects > gaussian-splatting > data > 360 > bonsai >
          format binary_little_endian 1.0
           element vertex 1164227
           property float x
           property float y
           property float z
           property float nx
          property float ny
           property float nz
          property float f_dc_0
          property float f_dc_1
          property float f_dc_2
          property float f_rest_0
          property float f rest 1
          property float f_rest_2
```

```
property float f_rest_42

56 property float f_rest_43

57 property float f_rest_44

58 property float opacity

59 property float scale_0

60 property float scale_1

61 property float scale_2

62 property float rot_0

63 property float rot_1

64 property float rot_2

65 property float rot_3

66 end_header
```

- Gaussian Properties (59 dimensions total):
 - xyz: 3D geometric center of the 3D Gaussian ellipsoid, 3 dimensions in total (nxyz is unassigned and invalid in the storage file)
 - dc&rest: Spherical Harmonics (SH) for representing anisotropic colors, 48 dimensions in total (i.e., 3rd-order SH, $3 \times (3 + 1)^2$
 - opacity: Opacity of the Gaussian ellipsoid, 1 dimension
 - scale: Scale vector of the Gaussian ellipsoid, 3 dimensions
 - rot: Rotation quaternion of the Gaussian ellipsoid, 4 dimensions

3DGS Modeling Result Storage

3DGS Modeling: Properties

Scale Rotate

Opacity

Unit Gaussian sphere

Gaussian ellipsoid

Transparent Gaussian ellipsoid

• A 3D ellipsoid is represented based on a 3D Gaussian distribution:

$$G(x) = e^{-\frac{1}{2}(x)^T \Sigma^{-1}(x)}$$

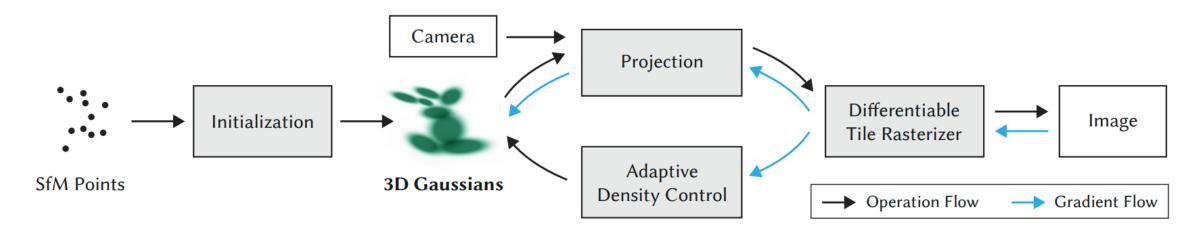
• The volume and pose of a 3D ellipsoid are determined by its covariance matrix, which consists of two components: scaling and rotation:

$$\Sigma = RSS^TR^T$$

Apply the Gaussian distribution to splatting computation to obtain the splat opacity α, followed by alpha blending:

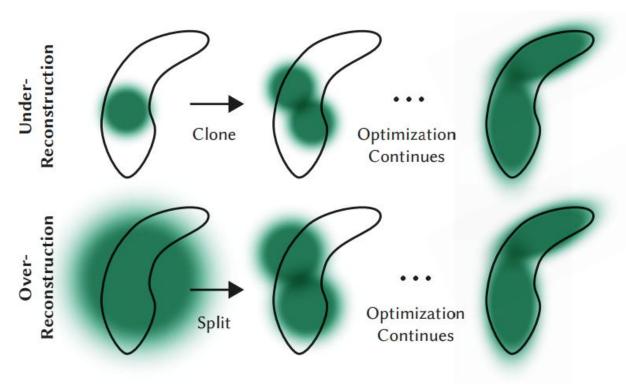
$$C = \sum_{i \in \mathcal{N}} c_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j),$$

3DGS Modeling: Pipeline



- Gaussian Ellipsoid Modeling Pipeline (Input: multi-view images; Output: 3D Gaussian ellipsoid modeling results):
 - SFM Initialization: Compute a sparse point cloud from multi-view images using SFM to initialize 3D Gaussians.
 - Gaussian Rendering and Optimization: Project 3D Gaussians into screen space for rasterization, compute the loss, and perform backpropagation to optimize Gaussian properties.
 - Adaptation and Adjustment: Duplicate/split Gaussians based on gradients and scaling to achieve better fitting of scene objects.

3DGS Modeling: Densification

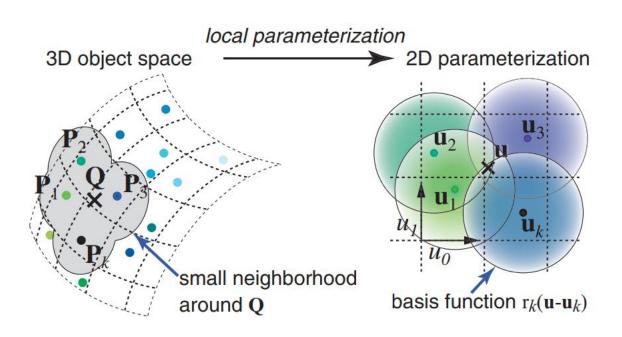


• Adaptive Density Control:

- Identify Gaussians with large gradients in their central position properties (i.e., Gaussians whose current position properties are insufficiently accurate) and perform adaptive densification based on Gaussian size:
 - Duplicate small Gaussians
 - Split large Gaussians
- 2. After Gaussian duplication & splitting, prune Gaussians with excessively large radii or excessively small opacities.

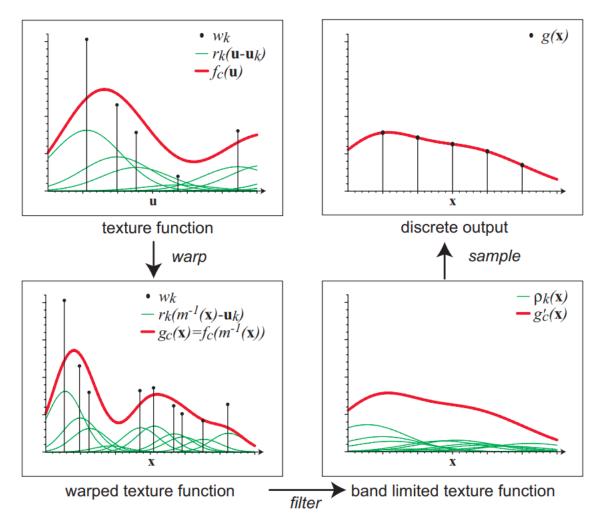
3DGS Rendering: Point Based Rendering Formula

- Point-Based Rendering formula: $C = \sum_{i \in \mathcal{N}} c_i \alpha_i \prod_{j=1}^{i-1} (1 \alpha_j),$
- Point-Based Rendering in 3DGS: $f_c(\mathbf{u}) = \sum_{k \in \mathbb{N}} w_k r_k (\mathbf{u} \mathbf{u}_k)$.



- w_k : The Gaussian color under the projection view, computed by Spherical Harmonics (SH)
- $r_k(u u_k)$: Color blending weight coefficient. Used in **splatting rendering** (i.e., splat opacity), which decays with the distance between the rendering point and the Gaussian center.
- In implementation, the point-based rendering with opacity decay from front to back is still adopted.

3DGS Rendering: Splatting Rendering Formula



Surface Splatting, SIGGRAPH 2001 EWA Splatting, TVCG 2002

- The purpose of splatting rendering is to make the contribution of an object to the rendering point decrease with the distance between them.
- Splatting Rendering Pipeline:
 - Warp: Projection of 3D objects onto 2D space
 - Filter: Splat Coefficient Filtering (weight decays with distance)
 - Sample: Sample pixel
- EWA Splat Coefficient:

$$r'_{k}(\mathbf{x}) = \mathcal{G}_{\mathbf{V}_{k}}(\mathbf{m}^{-1}(\mathbf{x}) - \mathbf{u}_{k}) \quad \text{(Sample pixel)}$$

$$= \frac{1}{|\mathbf{W}^{-1}\mathbf{J}_{k}^{-1}|} \mathcal{G}_{\mathbf{V}'_{k}}(\mathbf{x} - \mathbf{m}(\mathbf{u}_{k})),$$

$$\mathcal{G}_{\mathbf{V}}(\mathbf{x}) = \frac{1}{2\pi |\mathbf{V}|^{\frac{1}{2}}} e^{-\frac{1}{2}\mathbf{x}^{T}\mathbf{V}^{-1}\mathbf{x}}, \quad \text{(Splat Coefficient Filtering)}$$

$$\mathbf{V}'_{k} = \mathbf{J}_{k} \mathbf{W} \mathbf{V}_{k} \mathbf{W}^{T} \mathbf{J}_{k}^{T}, \quad \text{(Projection)}$$

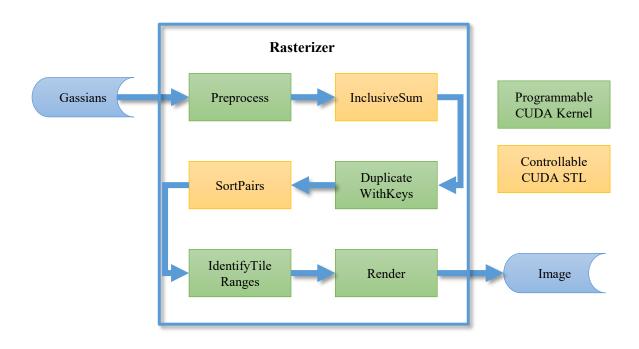
$$\mathbf{V}_k' = \mathbf{J}_k \mathbf{W} \mathbf{V}_k \mathbf{W}^T \mathbf{J}_k^T$$
. (Projection)

3DGS Rendering: Tile based rendering

Tile Visualization

- Tile-Based Rendering Idea:
 - Divide the image region into several pixel matrices (Tile)
 - Pixels within the same Tile render the same Gaussian set.
 - Pixels between different Tiles render different Gaussian sets.
- Advantages of Tile-Based Rendering:
 - Shared Memory: Pixels within the same tile share Gaussian information efficiently, reducing video memory usage.
 - Efficient Rendering: Pixel threads only render the Gaussians on the corresponding tile.

3DGS Rendering: Rasterization



3DGS Rasterization Pipeline

Rasterization Stage:

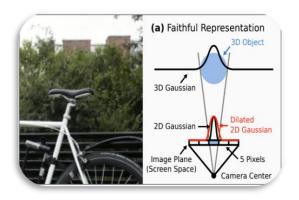
- Preprocess: Preprocess Gaussians to obtain projection attributes such as projected position, covariance, and color.
- InclusiveSum&DuplicateWithKeys: Obtain the Tiles covered by Gaussians and create indices for the Gaussian-Tile pairs to be rendered.
- SortPairs&IdentifyTileRanges: Acquire the index range of Gaussians to be rendered for each Tile.
- Render: Perform Splatting and AlphaBlending on the Gaussians on the Tile to which the pixel belongs.

3DGS Effects

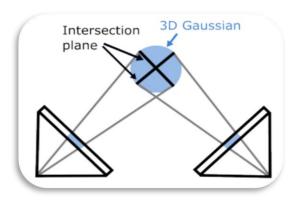
Dataset	Tanks&Temples					
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.719	21.08	0.379	25m5s	13.0	2.3GB
INGP-Base	0.723	21.72	0.330	5m26s	17.1	13MB
INGP-Big	0.745	21.92	0.305	6m59s	14.4	48MB
M-NeRF360	0.759	22.22	0.257	48h	0.14	8.6MB
Ours-7K	0.767	21.20	0.280	6m55s	197	270MB
Ours-30K	0.841	23.14	0.183	26m54s	154	411MB
Detect	Mip-NeRF360					
Dataset			Mip-NeK	L200		
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	Mip-NeR <i>LPIPS</i> ↓	Train	FPS	Mem
	<i>SSIM</i> [↑] 0.626	<i>PSNR</i> [↑] 23.08			FPS 6.79	Mem 2.1GB
Method Metric	001111		$LPIPS^{\downarrow}$	Train		
Method Metric Plenoxels	0.626	23.08	<i>LPIPS</i> ↓ 0.463	Train 25m49s	6.79	2.1GB
Method Metric Plenoxels INGP-Base	0.626 0.671	23.08 25.30	<i>LPIPS</i> ↓ 0.463 0.371	Train 25m49s 5m37s	6.79 11.7	2.1GB 13MB
Method Metric Plenoxels INGP-Base INGP-Big	0.626 0.671 0.699	23.08 25.30 25.59	<i>LPIPS</i> ↓ 0.463 0.371 0.331	Train 25m49s 5m37s 7m30s	6.79 11.7 9.43	2.1GB 13MB 48MB

3DGS Extensions

Rendering Quality

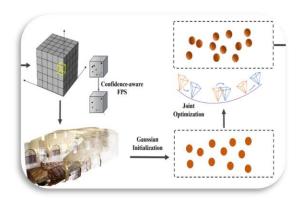


Geometric Quality



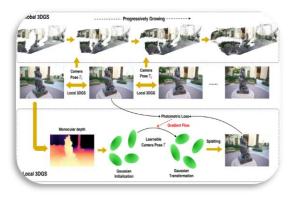
Model Size

Training Speed

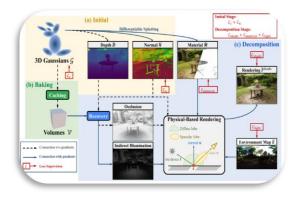


Large-Scale Scene Modeling

Model Robustness



Multimodal Signals



Questions?

